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1. Symbolic Summary for Blicket Experiments

Query Type Trials Covar. of A Covar. of B

D.R. E+ | A+B−
100% 100%E+ | A−B+

I.D. E+ | A+B+

50% 100%E− | A+B−

S.O.
E+ | A+B−

100% 50%E− | A−B+

E+ | A+B+

B.B. E+ | A+B+

100% 100%E+ | A+B−

Table 1: A symbolic summary for Figure 1 in the main text.
In each of the query type, i.e., direct (D.R), indirect (I.D.),
screening-off (S.O.), and backward-blocking (B.B.), we list
the trials’ configurations and covariation (Covar.) of each
object with an activated machine. A trial’s configuration is
denoted as the combination of variables, where E represents
the activation of the Blicket machine, A the attendance of
object A, and B the attendance of object B, with + indi-
cating activation or presence and − inactivation or absence.
Covariance is computed as P (E+|X+), X ∈ {A,B}.

Table 1 symbolically summarizes the Blicket experi-
ments demonstrated in Figure 1 in the main text. The sim-
plest one conducted in Sobel et al. [7] is shown in the direct
setting, where both objects are independently and always
associated with an activated Blicket machine, and hence be-
lieved to be Blickets. Such a conclusion could be derived
from the covariation of each object with an activated ma-
chine. Similarly, in the indirect setting, object B also shows
perfect covariation with an activated machine, though its
Blicketness is indirectly verified from the inactivation of ob-
ject A. The behavior in object A in the indirect query and
that of object B in the screening-off query are consistent:
Despite half the chance of being associated with activation,
their Blicketness is screened-off by another object from
probabilistically setting the machine off. Note that the indi-

rect setting is also referred to as indirect screening-off [2, 7].
In the backward-blocking query, both objects show perfect
association with activation. However, object B’s Blicketness
is actually blocked by object A and cannot be solely deter-
mined from the observation. This is the case where we find
most models, either purely neural or neuro-symbolic, catas-
trophically fail.

2. Label and Query Type Distributions
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Figure 1: Distributions of (a) labels and (b) query types in
the I.I.D. split of ACRE.
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Figure 2: Distributions of (a) labels and (b) query types in
the compositionality split of ACRE.

Figs. 1 to 3 show the label and query type distributions in
the three splits of the ACRE dataset. Note that we keep the
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Figure 3: Distributions of (a) labels and (b) query types in
the systematicity split of ACRE.

label distributions to be roughly uniform in order to avoid
statistical bias. Around half of all queries are on screening-
off and backward-blocking; these cases cannot be solved by
simply calculating covariation.

3. Model Details

Operator Params
Convolution 3-2-32
BatchNorm 32
ReLU
Convolution 3-2-32
BatchNorm 32
ReLU
Convolution 3-2-32
BatchNorm 32
ReLU
Convolution 3-2-32
BatchNorm 32
ReLU

Table 2: Network architecture used for the CNN module.

Operator Params
Linear 512
ReLU
Dropout 0.5
Linear 3

Table 3: Network architecture used for the MLP module.

Operator Params
LSTM 128
Linear 3

Table 4: Network architecture used for the LSTM module.

Operator Params
Transformer 8-1024-12-0.1
Linear 3

Table 5: Network architecture used for the BERT module.

Operator Params
Linear 10
Sigmoid
Linear 1

Table 6: Network architecture used for each gj in NS-Opt.

Table 2 details the CNN architecture used in various
models we benchmarked. We use A-B-C to denote a con-
volution layer’s parameters, where A refers to the kernel
size, B the stride, and C the channel number. Table 3 shows
the shared MLP architecture, where the final linear layer
predicts the state of the Blicket machine, either inactivated,
undetermined, or activated. For the LSTM module in Ta-
ble 4, we use a single-layer LSTM and connects it with a
linear layer to predict the final state. In Table 5, the BERT
module [1] reuses the bidirectional Transformer layer [8],
which is denoted by the number of heads, the size of the
hidden space, the number of layers, and the rate of dropout.
For ResNet [4] and WReN [6], we keep their network archi-
tectures as initially proposed. Modifications for LEN [11]
and MXGNet [9] have been discussed in the main text. For
neuro-symbolic models, we use the Mask RCNN [3] with
ResNet-50 FPN [4, 5] in Detectron 2 [10] for scene parsing.
The MLP module used for each gj in NS-Opt is shown in
Table 6. Note that during actual implementation, we com-
bine all gj into a single model and jointly optimize.

4. Additional Examples
Figs. 4 to 9 show additional examples of ACRE prob-

lems in the training sets and test sets of the I.I.D. split, the
compositionality split, and the systematicity split, respec-
tively.
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Figure 4: Examples in the training set of the I.I.D. split of ACRE. In each problem, we first show six context trials followed
by four query trials.
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Figure 5: Examples in the test set of the I.I.D. split of ACRE. In each problem, we first show six context trials followed by
four query trials.



Answer: Undetermined Answer: Inactivated Answer: Activated Answer: Activated

Answer: Undetermined Answer: Inactivated Answer: Activated Answer: Undetermined

Answer: Activated Answer: Undetermined Answer: Activated Answer: Undetermined

Figure 6: Examples in the training set of the compositionality split of ACRE. In each problem, we first show six context trials
followed by four query trials.



Answer: Undetermined Answer: Activated Answer: Undetermined Answer: Inactivated
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Figure 7: Examples in the test set of the compositionality split of ACRE. In each problem, we first show six context trials
followed by four query trials. Note that the attribute combinations in the test set are disjoint with those in the training set.



Answer: Activated Answer: Undetermined Answer: Undetermined Answer: Undetermined

Answer: Activated Answer: Activated Answer: Inactivated Answer: Activated

Answer: Undetermined Answer: Inactivated Answer: Activated Answer: Activated

Figure 8: Examples in the training set of the systematicity split of ACRE. In each problem, we first show six context trials
followed by four query trials.



Answer: Undetermined Answer: Activated Answer: Undetermined Answer: Inactivated

Answer: Activated Answer: Inactivated Answer: Activated Answer: Activated

Answer: Activated Answer: Activated Answer: Activated Answer: Inactivated

Figure 9: Examples in the test set of the systematicity split of ACRE. In each problem, we first show six context trials followed
by four query trials. Note the distributions of an activated machine are different in the training set and the test set, but the
causal reasoning strategy remains the same.
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