
Pointers & Pass-by-reference

• A pointer is a value that designates the address of some value.
• Pointers are variables that hold a memory location as their value
• Remember the address-of operator (&) we used with scanf()?

– This operator gets the address of the operand
• Pointers give us a way to save the result of the address-of operator into a variable

– The type returned by the address-of is a pointer!

Assigning and dereferencing pointers

• Instead of passing the result of the address-of operator to a function (e.g. scanf) let’s save the
result into a variable

1 int a = 5; // declare & initialize an int to the value of 5
2 int *b = &a; // declare & initialize a pointer to store the address

of the variable a

• At this point, b doesn’t store the value 5. It stores the memory address of the variable a. The
variable a stores the value 5, not b.

• But how can we access the value of a using the pointer b?
– We use the dereferencing operator to tell the computer "take me to the memory location
stored by this pointer:

1 int a = 5; // declare & initialize an int to the value of 5
2 int *b = &a; // declare & initialize a pointer to store the address

of the variable a
3 int c = *b; // declare & initialize an int to the value of the

dereferenced b, which is the value stored by a

• The dereference operator is the complement to the address-of operator, similar to how subtrac-
tion is the complement to addition

House analogy

• We are all familiar with houses and the address systemwe use with the post o�ice
• This is a great parallel to pointers in C.
• We can think of variables as houses (a very large box to store data in - but we won’t worry about
the size of the house right now).

• We can think of memory address as addresses

1



– Do addresses have houses of their own? NO!
– But when we declare a pointer, wemake a house specifically to store an address

• Some questions (credit, though this is for C++ http://alumni.cs.ucr.edu/~pdiloren/C++_Pointers/
wherelive.htm):

Where do you live? (&)

• Suppose we have the following code:

1 int paul = 21; // store the value 21 in paul's house
2 int tom = paul; // store the value in paul's house in tom's house

(makes a copy)
3 int *melissa = &paul; // store address of paul in melissa's house

• And suppose paul’s address is 1500.
• What is the value stored in melissa’s house?

– 1500
– melissa’s house stores a pointer

• Let’s look at this as a diagram:

2

http://alumni.cs.ucr.edu/~pdiloren/C++_Pointers/wherelive.htm
http://alumni.cs.ucr.edu/~pdiloren/C++_Pointers/wherelive.htm


Figure 1: IMAGE

What’s in your house? (*)

• Suppose we continue our example above and write the following:

1 int dave = *melissa; // stores the value 21 in dave's house

• How did 21 get into dave’s house?
– Dave asks melissa what value she is storing.
– Melissa tell’s dave “1500”.
– Dave knowsmelissa’s house stores a pointer, so he then goes to the address 1500 and ask
whoever is there what value is inside (notice, dave doesn’t know that 1500 is paul’s house)

– Dave then stores 21 in his house

3



Figure 2: IMAGE

• Now suppose we execute the following line:

1 *melissa = 30;

• How do the houses update?
– paul’s house is updated to store 30
– melissa’s house stays the same
– dave’s house stays the same

* dave lives in a di�erent house than paul, and the contents of dave’s house don’t change
when the contents of paul’s house change

NULL pointers

• For most variable types, we have a default value we typically use by default. For instance, 0 is
the default type for int.

• Pointers have no explicit default type (meaning will value will be garbage if you do not initialize
the pointer when you declare it).

4



• We use a special marco (preprocessor definition) called NULL to indicate that this pointer does
not point to any memory address:

1 int *ptr = NULL; // does not point to anything
2 //now we can check if the pointer is safe to dereference (because it

actually points to something)
3 if(ptr != NULL){
4 *ptr = 5; // safe to dereference
5 }

• If we don’t make sure we properly initialize a pointer to a memory address

Stress-testing your understanding of pointers:

• What if we wanted a pointer to a pointer that points to an int?
– This means the data type of this variable/house would point to a memory address that
points to the memory address of an int

1 int a = 5;
2 int *ptr = &a;
3 int **ptr2ptr = &ptr;

• We can continue doing this over and over to get “deeper” into what points to what
• Consider this complicated example:

1 int *p1, *p2, **p3, a = 5, b = 10;
2 p1 = &a;
3 p2 = &b;
4 p3 = &p2;
5 *p1 = 10;
6 p1 = p2;
7 *p1 = 20;
8 **p3 = 0;
9 printf("%i %i %i %i %i\n", *p1, *p2, **p3, a, b);
10 Answer:
11 0 0 0 10 0

Arrays and pointers

• Arrays represent contiguous blocks of computer memory. Each element of an array is placed
immediately next to the preceding/next element of the array in memory.

5



• Pointers and arrays are deeply and somewhat confusingly linked. There’s two basic rules:

1. A variable declared as an array of some type acts as a pointer to that type. When used by itself, it
points to the first element of the array.

2. A pointer can be indexed like an array name. We can use []with pointers the same way we use
array names.

• Array names can be thought of as constant pointers, meaning the address they store cannot
change, but the contents at that address can change
– int *const const_ptr creates a constant pointer to a non-constant int
– There’s a ni�y trick called the ‘backwards spiral rule’ that makes reading these declarations
a lot easier (you don’t need to know/study this, just providing for additional info) http://c-
faq.com/decl/spiral.anderson.html

Figure 3: IMAGE

Arrays as pointers

• This occurs primarily when arrays are passed into/returned from functions (remember how we
returned an array from a function? We used a pointer).

6

http://c-faq.com/decl/spiral.anderson.html
http://c-faq.com/decl/spiral.anderson.html


1 /* two equivalent function definitions */
2 int func(int *paramN);
3 int func(int paramN[]);

• Pointers and array names can be used almost interchangeably. There are a few exceptions/things
to keep in mind:
1. You cannot assign a new pointer value to an array name (since the array name is a constant
value, and therefore immutable/non-modifiable).

2. The array name will always point to the first element of the array.

Pointer arithmetic

• We can add/subtract integer values from pointers. This is called pointer arithmetic.
• This is relevant for iterating over arrays using a pointer and pointer arithmetic
• The following two expressions are equivalent:

1 *(arr+j) // access element using pointer arithmetic
2 arr[j]; // access element using [] operator

• What does the first expression do?
– Adds j*sizeof(arr type) to arr, and then dereferences that memory location
– For instance, if we have an array of ints, each array element is 4 bytes long.
– If arr starts at address 3500, the 5th element is located at memory address
3500+(5*sizeof(int)).

– Notice the sizeof()was not explicit, the compiler will automatically multiply j by the
size of eachmember of the array

• Consider the following (figures, etc taken from here):

1 int *ip;
2 int a[10];
3 ip = &a[3];

• ipwould end up pointing to the forth element of a.

Figure 4: IMAGE

• Now suppose we wrote

7

https://www.eskimo.com/~scs/cclass/notes/sx10b.html


1 ip2 = ip + 1;

• Then we’d have:

Figure 5: IMAGE

Knowledge check

1 #include <stdio.h>
2
3 int main()
4 {
5 int array [5] = { 9, 7, 5, 3, 1 };
6
7 printf("%p\n", (void*) &array[1]); // print memory address of array

element 1, must cast to void pointer to print
8 printf("%p\n", (void*) array+1); // print memory address of array

pointer + 1
9
10 printf("%d\n", array[1]); // prints 7
11 printf("%d\n", *(array+1)); // prints 7 (note the parenthesis

required here)
12
13 return 0;
14 }

Iteration using pointer arithmetic

• We can use pointer arithmetic to iterate over an array, instead of using integer indices

1 const size_t arr_len = 7;
2 char name[arr_len] = "Mollie";
3 int numVowels(0);
4 // initialize the pointer to the beginning of the array

8



5 // condition is whether or not the pointer has past the last valid
memory address for the array (name + arr_len)

6 // loop statement incrementing the pointer to the next element in the
array

7 for (char *ptr = name; ptr < name + arr_len; ++ptr)
8 {
9 switch (*ptr)
10 {
11 case 'A':
12 case 'a':
13 case 'E':
14 case 'e':
15 case 'I':
16 case 'i':
17 case 'O':
18 case 'o':
19 case 'U':
20 case 'u':
21 ++numVowels;
22 }
23 }

Pass-by-reference

• Basic idea: insteadof copying arguments to a function, use the sameunderlyingmemory location
to pass values into a function (i.e. instead of duplicating a house when calling a function, use the
same house).

• Many other languages support a concept called passing-by-reference
• C always uses pass-by-value, which means when we write:

1 int dummy_func(int param){
2 // this modification doesn't affect the variable that was passed into

the function
3 param++;
4 return param;
5 }
6
7 int main(){
8 int a = 5;
9 int b = dummy_func(a); // a is copied to dummy_func
10 // since a was copied (and then the copied value was modified in

dumm_func, then returned), the value of a in main does not change

9



11 printf("a: %d, b: %d\n", a, b);
12 }

• Pass-by-reference prevents the value from being copied and instead tells the function to directly
modify the variable stored in the caller’s scope
– This is clearly useful!
– So far, we’ve only been able to return a single data type, but if we canmodify parameters in
the caller’s scope, we have a way to “return” multiple values by telling the parameters “not
to copy” into the function’s scope.

• But C does not support this.
• Fortunately, pointers are just memory addresses.
• If you copy a pointer, the memory location says the same.
• This means we can create pass-by-reference behavior by passing pointers to functions

– The pointers are copied into the function, but if we dereference andmodify their value, we
aren’t changing the pointer, but the contents the pointer refers to.

– This is essentially pass-by-reference behavior
– In the notes on arrays, we actually never needed to return the array! For instance:

1 //NOTICE: the asterisk (star) next to int indicates we are returning an
array

2 int* add_to_zeroth_element(int arr[], size_t arr_len, int value){
3 // this is just a dummy array operation, in practice you'll do

wonderful and amazing things here
4 arr[0] += value;
5 // NOTICE: return the array, we don't use [] here, just the name of

the array.
6 return arr;
7 }
8
9 void add_to_zeroth_element_no_return(int *const arr, size_t arr_len,

int value){
10 // this is just a dummy array operation, in practice you'll do

wonderful and amazing things here
11 arr[0] += value;
12 // don't need
13 }
14
15 int main(){
16 int arr[] = {1,2,3};
17 // notice the type here has to match the return type of the function.

Exactly what's going on here will be covered with pointers.

10



18 int* result = add_to_zeroth_element(arr, 3, 5);
19
20 for (j = 0; j < 3; ++j)
21 {
22 printf("%d ", arr[j]);
23 }
24
25 // increment once more on the first element, no return
26 add_to_zeroth_element_no_return(arr, 3, 5);
27
28 for (j = 0; j < 3; ++j)
29 {
30 printf("%d ", arr[j]);
31 }
32 }

Exercises

1. Write a program in C to add two numbers using pointers. Test Data : Input the first number : 5
Input the second number : 6 Expected Output : The sum of the entered numbers is : 11

1 #include <stdio.h>
2 int main()
3 {
4 int first, second, *ptr, *qtr, sum;
5
6 printf(" Input the first number : ");
7 scanf("%d", &first);
8 printf(" Input the second number : ");
9 scanf("%d", &second);
10
11 ptr = &first;
12 qtr = &second;
13
14 sum = *ptr + *qtr;
15
16 printf(" The sum of the entered numbers is : %d\n\n",sum);
17
18 return 0;
19 }

2. Write a program in C to print the elements of an array in reverse order using pointers

11



1 #include <stdio.h>
2 int main()
3 {
4 int n, i, arr[15];
5 int *ptr;
6
7 printf(" Input the number of elements to store in the array (max 15)

: ");
8 scanf("%d",&n);
9 ptr = &arr[0]; // ptr stores the address of base array arr1
10 printf(" Input %d number of elements in the array : \n",n);
11 for(i=0; i<n; i++)
12 {
13 printf(" element - %d : ",i+1);
14 scanf("%d",ptr);//accept the address of the value
15 ptr++;
16 }
17
18 // print the contents
19 for (ptr = arr + n - 1; ptr >= arr; ptr--){
20 printf("%d ", *ptr);
21 }
22 printf("\n");
23 }

3. Create a function print_addr(int x)whose sole purpose is to print the address of the integer
xpassed to it. Create an integer variable inmain, print out its address, and thenpass that variable
to print_addr. Compare the results. Is this expected behavior?

12


	Pointers & Pass-by-reference
	Assigning and dereferencing pointers
	House analogy
	Where do you live? (&)
	What's in your house? (*)

	NULL pointers
	Stress-testing your understanding of pointers:
	Arrays and pointers
	Arrays as pointers
	Pointer arithmetic

	Pass-by-reference
	Exercises


